Cost-Effectiveness Analysis of Human Papillomavirus Vaccination in the Netherlands

Inge M. C. M. de Kok, Marjolein van Ballegooijen, J. Dik F. Habbema

Background In the Netherlands, low cervical cancer incidence and mortality rates might limit the cost-effectiveness of vaccination against the human papillomavirus (HPV). We examined the effect on cervical cancer incidence and mortality of adding HPV vaccination to the current Dutch cervical cancer screening situation and calculated the cost-effectiveness.

Methods Costs and effects were estimated under favorable assumptions (ie, that HPV vaccination provides lifelong protection against 70% of all cervical cancers, has no side effects, and is administered to all women regardless of their risk of cervical cancer) by using the microsimulation screening analysis (MISCAN) model. The impact of changes in the price of vaccination, number of booster vaccinations, vaccination attendance rate, vaccination efficacy, cervical cancer incidence level, and quality-of-life assumptions was investigated in sensitivity analyses.

Results Using the current price of €118 per vaccine dose and with discounting of costs and effects at an annual rate of 3%, adding HPV vaccination to the current Dutch screening situation had a cost-effectiveness ratio of €6350 per quality-adjusted life-year (QALY) gained. The threshold price per vaccine dose at which the cost-effectiveness of vaccination would correspond to an acceptability threshold of €20000 per QALY gained was €40. With the addition of one or more (up to four) booster vaccinations during a lifetime, this threshold price decreased to €33 for one booster (to €16 for four boosters). With a doubling of the cervical cancer incidence level, the cost-effectiveness ratio was €24400 per QALY gained and the maximum price per dose at threshold of €20000 was €97. All threshold prices were lower under less favorable effectiveness assumptions.

Conclusions In the Netherlands, HPV vaccination is not cost-effective even under favorable assumptions. To become cost-effective, the vaccine price would have to be decreased considerably, depending on the effectiveness of the vaccine.

Multiple analyses of the cost-effectiveness of vaccination against the human papillomavirus (HPV) have concluded that vaccination should be cost-effective (1–6). However, this conclusion mainly depends on the incidence and mortality rates of cervical cancer. Low incidence and mortality rates imply a limited maximum effect of HPV vaccination.

The low cervical cancer incidence and mortality rates in the Netherlands are associated with an efficient national screening program, in which women are invited to have a free Pap smear every 5 years from age 30 to 60 years (7). Cervical cancer mortality in the Netherlands has steadily declined over the last five decades, and in 2005, it was 1.6 per 100000 woman-years [World Standardized Rate (WSR) (8)]. This rate is lower than the WSR of 2.5 per 100000 woman-years in the United States for the period 2001–2005 and 1.9 per 100000 woman-years in the United Kingdom in 2005 (9,10).

This study explores the cost-effectiveness of adding HPV vaccination to the current screening situation in the Netherlands. Earlier decisions by the Dutch government on the cervical cancer screening program were based on cost-effectiveness analyses that used a cost-effectiveness acceptability threshold of €20000 per quality-adjusted life-year (QALY) gained (11), that is, an intervention with a cost-effectiveness ratio of more than €20000 per QALY gained was not considered acceptable. We used this threshold in this analysis; in addition, we explored a threshold of €50000 per QALY gained. For comparison with other cost-effectiveness analyses, the main analyses were performed under the favorable assumptions for vaccination, that is, that vaccination provides lifelong protection against 70% of all cervical cancers, has no side effects, and is administered to all women regardless of their risk of cervical cancer. Given that the price

Affiliation of authors: Department of Public Health, Erasmus MC, University Medical Center, Rotterdam, the Netherlands.

Correspondence to: Inge M. C. M. de Kok, MSc, Department of Public Health, Erasmus MC, University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands (e-mail: i.dekok@erasmusmc.nl).

See “Funding” and “Notes” following “References.”

DOI: 10.1093/jnci/djp183

Published by Oxford University Press 2009.
CONTEXT AND CAVEATS

Prior knowledge
Cervical cancer incidence and mortality rates in the Netherlands are low, which could limit the cost-effectiveness of human papillomavirus (HPV) vaccination.

Study design
A simulation model was used to estimate costs and effects of adding HPV vaccination to the current screening situation in the Netherlands and to examine the impact of changes in the price of vaccination, number of booster vaccinations, vaccination attendance rate, vaccination efficacy, cervical cancer incidence level, and quality-of-life assumptions on the cost-effectiveness of HPV vaccination.

Contribution
HPV vaccination is not cost-effective, even under favorable assumptions, in the Netherlands.

Implications
To become cost-effective, the vaccine price would have to be decreased considerably, depending on the long-term effectiveness of the vaccine.

Limitations
The impact of herd (or community) immunity was underestimated because viral transmission was not included in the model. The impact of vaccination on other HPV-related diseases was not taken into account.

Model Specifications and Assumptions

Demography, Epidemiology, and Natural History. We simulated a Dutch population at risk for cervical cancer based on demographic (13) and hysterectomy (14) data. The age distribution of the incidence of preinvasive neoplasia that will eventually become cancer was calibrated to the age distribution of the prescreening mortality; the latter distribution was corrected for cohort effects based on an age-period–cohort analysis (15). The age distribution of the incidence of preinvasive lesions that will regress before they become cancer was calibrated to the observed cervical intraepithelial neoplasia (CIN) detection rates in the Netherlands (derived from the Dutch Network and National Database for Pathology [PALGA]) for the period 1997–2001. The age distribution of the incidence of HPV infections that will clear before progressing to CIN was calibrated to the observed HPV prevalence (16).

Disease was subdivided into seven sequential stages: HPV infection, three preinvasive stages (CIN grades 1, 2, and 3 [CIN 1, CIN 2, and CIN 3, respectively]), and three invasive stages [International Federation of Gynecology and Obstetrics (FIGO) stages IA, IB, and II+ (17)]. The first disease stage—HPV infection (without neoplasia)—cannot be diagnosed because screening is performed with cytology and not with an HPV test; preinvasive stages and FIGO IA cases can only be diagnosed by screening and not clinically because stage IA is asymptomatic, whereas stages IB and II+ cases can be diagnosed by screening as well as clinically. A Weibull distribution was used to assume variation among women in the duration of the different stages. The stage-specific survival used in the model for clinical cases (ie, cases diagnosed based on symptoms as opposed to screen detection) was age specific and based on observed survival and on Dutch mortality to incidence ratios from the prescreening period in the Netherlands (15).

Assumptions Regarding Screening, Vaccination, and Treatment. We assumed that women were screened as currently occurs in the Dutch program, that is, every 5 years from age 30 to 60 years. The screening attendance rate was based on the observed rates from PALGA for women who had at least one Pap smear in the previous 5 years (18). We assumed that 10% of the population would never attend screening and would have a threefold higher background risk for cervical cancer than the 90% of the population comprising the potential attenders (19). The sensitivity of the smear for different disease stages was estimated at 50% for CIN 1, 65% for CIN 2, 80% for CIN 3, 85% for preclinical invasive stages IA and IB, and 90% for preclinical invasive stage II+ (20). Specificity of the test was assumed to be 98.5% based on the false-positive rate of Pap smears in the Dutch screening program. We assumed that women with a borderline test result (atypical squamous cells of undetermined significance or low-grade squamous intraepithelial lesion) had a repeat smear and those with a positive test result (high-grade squamous intraepithelial lesion) were referred for colposcopy and biopsy. Detection (and the associated management of preinvasive lesions) was assumed to lead to a 100% cure rate. For screen-detected invasive cancers, survival was modeled as a reduction in the risk of dying from cervical cancer compared with that of dying from clinically diagnosed cancer.

We assumed that the first HPV vaccination (comprising three doses) was at age 12 years. The vaccination participation rate was...
assumed to be 85%, with no selection with regard to the risk of cervical cancer. For additional vaccinations (comprising one dose each) during a lifetime, we assumed that only women who received the first vaccinations were invited and that the participation rate was 100%. We assumed that the first round of three vaccinations conferred lifelong immunity. Vaccine efficacy was estimated to be 70% against cancer, 35% against preinvasive lesions, and 1.5% against HPV infections; these estimates were based on the prevalence of HPV types 16 and 18 in cancers; the weighted mean of the prevalence of HPV types 16 and 18 in CIN 1, CIN 2, and CIN 3 lesions worldwide; and the prevalence of HPV types 16 and 18 in women with normal cytology (16,21,22).

Costs and Utilities. Table 1 presents the estimated costs and utilities associated with vaccination, screening, and treatment. Screening costs include costs of the invitational system, time and travel costs for women attending screening, costs of smear taking, costs of cytological evaluation, and costs of registration in PALGA. Vaccination costs include costs of the invitational system; time, travel, and administrative costs for women attending vaccination; and the cost of the vaccine dose itself (23). The costs of screening, diagnosis, and treatment procedures for detected preinvasive lesions, of primary treatment of invasive cervical cancer, and of treatment and palliative care for advanced cervical cancer were derived from a cost study conducted in the Netherlands (18). Utilities were based on Dutch data and data from other countries (2,15,24).

Model. The model we present is a cohort model. For this cohort analysis, we used the cervical cancer risk level for Dutch women born after 1940 (15). On the basis of Dutch mortality data, we assumed that women born after 1940 have a lower risk of cervical cancer than women born before 1940 (8). The incidence rate of invasive cervical cancer simulated without the current screening program was 12.3 per 100,000 life-years (lifetime risk = 1.0%), and the mortality rate was 4.9 per 100,000 life-years (lifetime risk = 0.4%). The incidence rate of invasive cervical cancer simulated under the current screening program was 6.1 per 100,000 life-years (lifetime risk = 0.5%), and the mortality rate was 2.1 per 100,000 life-years (lifetime risk = 0.2%).

Cost-Effectiveness and Sensitivity Analyses
The results account for the simulated effects and costs until all simulated women have died. The effects are presented as numbers of clinical cases, screen-detected cancers, disease-specific deaths, life-years lost, and QALYs lost to cervical cancer. Costs were calculated by multiplying the unit costs linked to specific events (ie, invitations, tests, vaccinations, detection of preinvasive lesions, cancer diagnosis, and deaths) by the numbers of those events. The

| Table 1. Assumptions about the costs and the amount and duration of the utilities of different events and health states* |
|---------------------------------|------------------|------------------|
| **Effect** | **Costs per effect, €** | **Amount** | **Duration** |
| **Vaccination** | | | |
| Initial vaccination (three doses)| | | |
| Vaccine material† | 354.00 | 0.995 | 3 wk |
| Time and travel costs | 9.42 | | |
| Administration | 18.00 | | |
| Organization‡ | 22.50 | | |
| Booster vaccination (one dose) | | 0.995 | 1 wk |
| Vaccine material† | 118.00 | | |
| Time and travel costs | 5.60 | | |
| Administration | 6.00 | | |
| Organization‡ | 7.50 | | |
| **Screening** | | | |
| Primary test§ | 53.64 | 0.994 | 2 wk |
| Costs of surveillance test | 51.00 | 0.994 | 1 y |
| **Treatment** | | | |
| Diagnoses and treatment of | | | |
| preinvasive stages | | | |
| False positive | 265.00 | 0.995 | 0.5 y |
| CIN 1 | 825.00 | 0.970 | 0.5 y |
| CIN 2 | 1221.00 | 0.930 | 0.5 y |
| CIN 3 | 1430.00 | 0.930 | 0.5 y |
| Diagnoses and treatment of | | | |
| invasive cancer | | | |
| FIGO IA | 4683.00 | 0.940 | 5.5 y |
| FIGO IB | 11 105.00 | 0.940 | 5.5 y |
| FIGO II+ | 10 223.00 | 0.823 | 5.5 y |
| Terminal care | 24 870.00 | 0.288 | 1 mo |

* CIN 1 = cervical intraepithelial neoplasia grade 1; CIN 2 = CIN grade 2; CIN 3 = CIN grade 3; FIGO = International Federation of Gynecology and Obstetrics.
† Includes injection fluid and needle.
‡ Includes invitation and database registration.
§ Includes invitation, time and travel, smear taking, cytological evaluation, and database registration.
same methodology was applied to calculate utilities. The cost-effectiveness calculations were conducted from a societal perspective. The costs and effects calculations were made for screening plus vaccination vs screening alone. Costs and effects were discounted at an annual rate of 3% to convert future costs and health effects to their value at the point in time when all women were 12 years old.

In sensitivity analyses, we examined the impact on cost-effectiveness of varying the unit price of vaccination, the need for booster vaccinations to keep up lifelong vaccine protection, the attendance rate to vaccination, the efficacy of vaccination, and the utilities. We varied the background cervical cancer risk level (in other words, the incidence level of cervical cancer in situations in which no screening exists) to allow our results to be compared with those of other cost-effectiveness analyses for situations with different cervical cancer incidence and mortality levels. For example, when we doubled the background risk, the incidence in the situation with screening (which we did not change and continued to use as the comparator situation) also doubled. For each sensitivity analysis, we calculated the cost-effectiveness ratio with the assumed vaccination costs and the threshold price per dose for vaccination to be cost-effective with an acceptability threshold of €20 000 per QALY gained. As an alternative, we also used an acceptability threshold of €50 000 per QALY gained, in keeping with cost-effectiveness policies in other countries (25). To evaluate the impact of quality-of-life estimates on the cost-effectiveness ratio and threshold price, we calculated the cost-effectiveness ratio and threshold prices under unfavorable quality-of-life assumptions for vaccination (ie, disutilities of vaccination doubled and disutilities of the other health states halved) and under favorable quality-of-life assumptions for vaccination (ie, disutilities of vaccination halved and disutilities of the other health states doubled).

Finally, we specifically adjusted our assumptions regarding the cervical cancer risk level and costs of vaccination to match those in cost-effectiveness analyses for other countries.

Results

Analysis Under Favorable Assumptions

We first determined the undiscounted effects and costs per 100 000 simulated women (Table 2). Adding one vaccination (of three doses) with lifelong effectiveness to the current screening program in the Netherlands prevented 36% of the CIN 2 and CIN 3 lesions detected by screening alone (850 lesions), 60% of the cervical cancers diagnosed (240 cancers), and 61% of the deaths from cervical cancer (100 deaths). There were 60% fewer life-years lost (2470 life-years) and 61% fewer QALYs lost (2680 QALYs). Based on the over-the-counter price per vaccine dose, the total costs increased by 64%, from €42.4 million per 100 000 women to €69.5 million per 100 000 women, which is an increase of €272 per woman during her lifetime.

We then examined the total costs and effects before and after discounting (Table 3). The cost-effectiveness ratios with discounting at 0% were €11 000 per life-year gained and €10 100 per QALY gained and with discounting at 3%, €59 700 per life-year gained and €53 500 per QALY gained.

Threshold Vaccine Price and Sensitivity Analysis

The threshold price per vaccine dose at which the cost-effectiveness of HPV vaccination would be €20 000 per QALY gained was €40 under favorable assumptions. Adding one or more booster vaccinations during a lifetime decreased the threshold price per vaccine dose to €33 for one booster and to €16 for four boosters (Figure 1, Table 4). At a cost-effectiveness threshold of €50 000 per QALY gained, the threshold price per vaccine dose was €110 and

Table 2. Estimated costs and effects of adding human papillomavirus 16/18 vaccination to the current screening program in the Netherlands (under favorable assumptions) compared with the costs and effects of the current screening program*

<table>
<thead>
<tr>
<th>Costs and effects</th>
<th>Screening only</th>
<th>Vaccination plus screening</th>
<th>Vaccination plus screening compared with screening only, No. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effects, No.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First primary screens</td>
<td>84 810</td>
<td>84 846</td>
<td>36 (0.04)</td>
</tr>
<tr>
<td>Follow-up primary screens</td>
<td>380 780</td>
<td>380 752</td>
<td>−28 (−0.01)</td>
</tr>
<tr>
<td>Triage screens</td>
<td>19 010</td>
<td>18 140</td>
<td>−870 (−5)</td>
</tr>
<tr>
<td>First rounds of three vaccinations</td>
<td>N/A</td>
<td>84 220</td>
<td>84 220 (100)</td>
</tr>
<tr>
<td>Screen-detected CIN 2 or CIN 3 lesions</td>
<td>2370</td>
<td>1520</td>
<td>−850 (−36)</td>
</tr>
<tr>
<td>Screen-detected cases of invasive cancer</td>
<td>86</td>
<td>33</td>
<td>−53 (−61)</td>
</tr>
<tr>
<td>Clinically detected cases of invasive cancer</td>
<td>410</td>
<td>170</td>
<td>−240 (−60)</td>
</tr>
<tr>
<td>Deaths from cervical cancer</td>
<td>170</td>
<td>70</td>
<td>−100 (−61)</td>
</tr>
<tr>
<td>Life-years lost</td>
<td>41 390</td>
<td>1660</td>
<td>−2470 (−60)</td>
</tr>
<tr>
<td>QALYs lost</td>
<td>4390</td>
<td>1710</td>
<td>−2680 (−61)</td>
</tr>
<tr>
<td>Costs, €</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Screening test (including triage test)</td>
<td>28 850 710</td>
<td>28 808 950</td>
<td>−41 760 (−0.14)</td>
</tr>
<tr>
<td>Vaccination</td>
<td>N/A</td>
<td>34 018 710</td>
<td>34 018 710 (100)</td>
</tr>
<tr>
<td>Treatment of preinvasive lesions</td>
<td>43 085 200</td>
<td>30 392 290</td>
<td>−1 269 230 (−29)</td>
</tr>
<tr>
<td>Treatment of (advanced) cancer†</td>
<td>9 192 210</td>
<td>36 595 530</td>
<td>−55 326 680 (−60)</td>
</tr>
<tr>
<td>Total</td>
<td>42 351 430</td>
<td>69 526 470</td>
<td>27 175 040 (64)</td>
</tr>
</tbody>
</table>

* Based on 100 000 simulated women followed from birth to death; no discounting. CIN 2 = cervical intraepithelial neoplasia grade 2; CIN 3 = CIN grade 3; QALYs = quality-adjusted life-years; N/A = not applicable.
† Includes costs of terminal care.
Table 3. Cost-effectiveness of adding human papillomavirus 16/18 vaccination to the current screening program in the Netherlands (under favorable assumptions) compared with the current screening program only*

<table>
<thead>
<tr>
<th>Vaccination plus screening compared with screening alone</th>
<th>0% discounting</th>
<th>3% discounting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total costs, £</td>
<td>27 175 000</td>
<td>22 153 400</td>
</tr>
<tr>
<td>Total LYs gained</td>
<td>2470</td>
<td>370</td>
</tr>
<tr>
<td>Total QALYs gained</td>
<td>2680</td>
<td>410</td>
</tr>
<tr>
<td>Costs per LY gained, £</td>
<td>11 000</td>
<td>59 700</td>
</tr>
<tr>
<td>Costs per QALY gained, £</td>
<td>10 100</td>
<td>53 500</td>
</tr>
</tbody>
</table>

* Based on 100 000 simulated women, followed from birth to death; costs and effects discounted at 0% and 3%. Costs are rounded to the nearest €100. LY = life-year, QALY = quality-adjusted life-year.

decreased to €95 with one booster vaccination and to €59 with four booster vaccinations (Figure 1, Table 4).

The cost-effectiveness ratio of adding HPV vaccination to the current situation varied with the underlying incidence of cervical cancer. For a situation in which the incidence of cervical cancer was 50% of that in the Netherlands, as, for example, is the case in Finland [WSR in 2005 = 3.3 per 100 000 woman-years (9)], the cost-effectiveness ratio of adding HPV vaccination was €105 600 per QALY gained and the maximum price per dose was €14 at a threshold of €20 000 per QALY gained and €50 at a threshold of €50 000 per QALY gained. If, on the other hand, the incidence under the screening program was twice as high as that in the Netherlands, as, for example, is the case in Denmark [WSR in 2003 = 10.8 per 100 000 woman-years (9)], the cost-effectiveness ratio of adding HPV vaccination was €24 400 and the maximum prices per dose at thresholds of €20 000 and €50 000 per QALY gained were €97 and €241, respectively (Figure 2, Table 4).

At a fourfold higher incidence level, as, for example, is the case in Brazil [WSR in 2002 = 23.4 per 100 000 woman-years (26)], the cost-effectiveness ratio was €109 900 per QALY gained.

For an eightfold higher incidence level, as, for example, is the case in Zimbabwe [WSR in 2002 = 52.1 per 100 000 woman-years (26)], the cost-effectiveness ratio was €41 100 per QALY gained.

Another parameter that had considerable impact on the cost-effectiveness of adding HPV vaccination to the current screening situation was the efficacy of the vaccination for preventing cervical cancer. For example, an absolute increase of 20 percentage points in vaccination efficacy (from 70% to 90%) decreased the cost-effectiveness ratio to €39 600, whereas an absolute decrease of 20 percentage points in efficacy (from 70% to 50%) increased the cost-effectiveness ratio to €76 000. At the €20 000 threshold, the corresponding threshold prices for a 20 percentage point increase and a 20 percentage point decrease in efficacy were €58 and €24, respectively (Table 4).

Furthermore, varying the utilities (ie, disutilities of vaccination halved or doubled and disutilities of the other health states halved or doubled) increased the cost-effectiveness ratio to €60 400 under the least favorable quality-of-life assumptions for vaccination and decreased the ratio to €46 000 under the most favorable quality-of-life assumptions for vaccination. At the €20 000 threshold, the corresponding threshold prices for the least and the most favorable assumptions were €34 and €47, respectively (Table 4). The vaccination attendance rate had an impact on the costs and effects of vaccination but only negligible effects on the cost-effectiveness ratio and the threshold price of vaccination (Table 4).

To examine whether HPV vaccination could become cost-effective in the Dutch context, we evaluated HPV vaccination...
under a combination of favorable assumptions regarding the efficacy and effectiveness of the vaccination program. For comparison, we also calculated the cost-effectiveness ratio and threshold price per dose vaccine under much less favorable assumptions, that is, five vaccinations (four boosters after the initial round) during a lifetime to maintain lifelong protection, 50% attendance rate (assuming that the 10% of the persistent nonattenders for screening, who were assumed to have a threefold higher risk of cervical cancer than the attenders, will not attend vaccination), and 50% efficacy of the vaccine on cervical cancer. Under these combined assumptions, we found that adding HPV vaccination to the current screening situation in the Netherlands had a cost-effectiveness ratio of €362 100 per QALY gained. In this situation, the price per vaccine dose would have to be €8 to achieve a cost-effectiveness ratio of €20 000 per QALY gained (€3 to achieve a cost-effectiveness ratio of €50 000 per QALY gained). In other words, even if the price per vaccine dose was €0, vaccination would still not be cost-effective.

In the Netherlands, for decisions about whether services are covered by health insurance, costs and effects are discounted at 4% and 1.5%, respectively, per year. Applying these rates in this analysis would reduce the costs for HPV vaccination from €53 500 to €19 700 per QALY gained.

Table 4. Sensitivity analyses of the undiscounted costs and number of quality-adjusted life-years gained per 100 000 simulated women of the cost-effectiveness of adding human papillomavirus 16/18 vaccination (assuming lifelong protection) to the current screening program in the Netherlands compared with the current screening program only and of the threshold price per vaccine dose to be cost-effective considering a cost-effectiveness threshold value of €20 000 or €50 000 per quality-adjusted life-year gained*

| Assumption | Undiscounted costs, €1000 | Undiscounted No. of QALYs gained | Discounted CER, † € | Price per vaccine dose to be cost-effective, €
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>At €20 000 per QALY gained</td>
</tr>
<tr>
<td>No. of vaccinations during a lifetime</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (age 12, three doses)</td>
<td>27 175</td>
<td>2680</td>
<td>53 500</td>
<td>40</td>
</tr>
<tr>
<td>2 (age 12, three doses; age 42, one dose)</td>
<td>38 722</td>
<td>2680</td>
<td>61 300</td>
<td>33</td>
</tr>
<tr>
<td>2 (age 12, three doses; age 32, one dose)</td>
<td>38 722</td>
<td>2680</td>
<td>64 100</td>
<td>31</td>
</tr>
<tr>
<td>3 (age 12, three doses; ages 32 and 52, one dose)</td>
<td>50 269</td>
<td>2680</td>
<td>69 800</td>
<td>27</td>
</tr>
<tr>
<td>4 (age 12, three doses; ages 27, 42, and 57, one dose)</td>
<td>61 815</td>
<td>2680</td>
<td>78 500</td>
<td>22</td>
</tr>
<tr>
<td>5 (age 12, three doses; ages 22, 32, 42, and 52, one dose)</td>
<td>73 362</td>
<td>2680</td>
<td>91 800</td>
<td>16</td>
</tr>
<tr>
<td>Vaccination attendance rate, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>15 994</td>
<td>1580</td>
<td>53 600</td>
<td>40</td>
</tr>
<tr>
<td>75</td>
<td>27 175</td>
<td>2680</td>
<td>53 500</td>
<td>40</td>
</tr>
<tr>
<td>100</td>
<td>32 104</td>
<td>3100</td>
<td>54 400</td>
<td>39</td>
</tr>
<tr>
<td>Vaccination efficacy against cervical cancer, %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>29 142</td>
<td>1950</td>
<td>76 000</td>
<td>24</td>
</tr>
<tr>
<td>70</td>
<td>27 175</td>
<td>2680</td>
<td>53 500</td>
<td>40</td>
</tr>
<tr>
<td>90</td>
<td>25 197</td>
<td>3520</td>
<td>39 600</td>
<td>58</td>
</tr>
<tr>
<td>Cervical cancer incidence, fold change relative to the Dutch incidence rate in the model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>30 053</td>
<td>1450</td>
<td>105 600</td>
<td>14</td>
</tr>
<tr>
<td>0.75</td>
<td>28 590</td>
<td>2100</td>
<td>70 700</td>
<td>27</td>
</tr>
<tr>
<td>1‡</td>
<td>27 175</td>
<td>2680</td>
<td>53 500</td>
<td>40</td>
</tr>
<tr>
<td>1.5</td>
<td>24 291</td>
<td>4020</td>
<td>34 600</td>
<td>67</td>
</tr>
<tr>
<td>2</td>
<td>21 196</td>
<td>5510</td>
<td>24 400</td>
<td>97</td>
</tr>
<tr>
<td>4</td>
<td>96 79</td>
<td>10 680</td>
<td>10 900</td>
<td>203</td>
</tr>
<tr>
<td>6</td>
<td>–1 324</td>
<td>15 580</td>
<td>6400</td>
<td>304</td>
</tr>
<tr>
<td>8</td>
<td>–11 785</td>
<td>20 170</td>
<td>4100</td>
<td>399</td>
</tr>
<tr>
<td>Assumed amount of utilities lost</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Least favorable assumptions for vaccination</td>
<td>27 175</td>
<td>2540</td>
<td>60 400</td>
<td>34</td>
</tr>
<tr>
<td>Most favorable assumptions for vaccination</td>
<td>27 175</td>
<td>2920</td>
<td>46 000</td>
<td>47</td>
</tr>
</tbody>
</table>

* QALYs = quality-adjusted life-years; CER = cost-effectiveness ratio.
† In costs per QALY gained, with costs and effects discounted at an annual rate of 3%.
‡ Incidence rate = 6.1 per 100 000 life-years.
We then compared our results for HPV vaccination added to screening with published cost-effectiveness ratios from other countries (Table 5). After adjusting for the incidence risk ratio for the specific study compared with that in the Netherlands (in our model) and for the costs of vaccination in the specific study, the cost-effectiveness ratio from this analysis was similar to other cost-effectiveness ratios. For example, Goldie et al. (2) estimated that the cost-effectiveness ratio of HPV-16/18 vaccination that was 90% effective would be US$24300 (or €16300) per QALY gained, assuming vaccination costs of US$393 (or €264) for the first vaccination round (compared with €404 in this study) and an incidence risk ratio of cervical cancer 1.7 times higher than that in our study (0.86% vs 0.5%). When we adjusted our model for these differences, the cost-effectiveness ratio of HPV vaccination was €18300 per QALY gained. This analysis suggests that other than differences in vaccination costs, differences in risk level explain to a large extent the differences in cost-effectiveness ratios.

Discussion

In this study, we calculated the cost-effectiveness of adding HPV vaccination to the current screening situation in the Netherlands. Adding vaccination under the favorable assumptions that it would provide lifelong protection against 70% of all cervical cancers, have no side effects, and would be given to all women regardless of their risk of cervical cancer had a cost-effectiveness ratio of €53 500 per QALY gained. This cost-effectiveness ratio is considerably higher than the cost-effectiveness threshold of €20 000 per QALY gained. In this favorable situation (in which only one vaccination round of three doses is required for a 100% lifelong protection against HPV-16/18-related cervical cancer), to achieve a cost-effectiveness ratio of €20 000 per QALY gained, the price per initial vaccination must be approximately €40 per dose. With one additional booster vaccination for lifelong protection, the price per initial vaccination must be €33 per dose and with four booster vaccinations, €16 per dose. All of these threshold prices were lower

Figure 2. Sensitivity analysis of the impact of variation in the relative incidence of cervical cancer compared with the Dutch incidence level and of differences in price per vaccine dose on the cost-effectiveness of adding human papillomavirus 16/18 vaccination (assuming lifelong protection) to the current screening situation compared with the current screening program only (costs and effects discounted at 3%). The intersections between the horizontal lines (ie, the acceptability thresholds) and the other lines represent the threshold price per vaccine dose at which the cost-effectiveness of vaccination would correspond to the acceptability threshold. QALY = quality-adjusted life-year.

Table 5. Published cost-effectiveness ratios of vaccination added to the current situation (costs per quality-adjusted life-year gained) from other countries compared with the cost-effectiveness ratio from this analysis adjusted for the incidence risk ratio of the specific study and the costs of vaccination in the specific study*

<table>
<thead>
<tr>
<th>Country (reference)</th>
<th>Incidence risk ratio</th>
<th>Costs of vaccine</th>
<th>Program costs</th>
<th>Published CER, €</th>
<th>Adjusted CER, † €</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Netherlands</td>
<td>1.0</td>
<td>354</td>
<td>50</td>
<td>53 500</td>
<td>53 500</td>
</tr>
<tr>
<td>Israel (29)</td>
<td>0.5</td>
<td>242</td>
<td>46</td>
<td>54 700</td>
<td>74 000</td>
</tr>
<tr>
<td>United Kingdom (28)</td>
<td>1.4</td>
<td>296</td>
<td>13</td>
<td>26 600</td>
<td>25 200</td>
</tr>
<tr>
<td>Canada (26)</td>
<td>1.6</td>
<td>257</td>
<td>Not reported</td>
<td>19 900</td>
<td>19 200</td>
</tr>
<tr>
<td>United States (2)</td>
<td>1.7</td>
<td>202</td>
<td>62</td>
<td>16 300</td>
<td>18 300</td>
</tr>
<tr>
<td>United States (6)</td>
<td>1.4†</td>
<td>270</td>
<td>66</td>
<td>29 300</td>
<td>29 100</td>
</tr>
<tr>
<td>Mexico (27)</td>
<td>3.8</td>
<td>176</td>
<td>0</td>
<td>2000</td>
<td>3000</td>
</tr>
</tbody>
</table>

* Costs of vaccination and published CERs are converted to Euros, using exchange rates as of August 21, 2008 (€1 = US$1.4894, £0.7933, CaD$1.5561, Mex$15.0302). CER = cost-effectiveness ratio.
† Adjusted for incidence risk ratio (column 2) and costs of vaccine and program costs (columns 3 and 4, respectively).
‡ Because the incidence of cervical cancer in the situation in which vaccination was applied was not published, we used the incidence of cervical cancer in the United States as reported for 2001–2005 (10), which was 8.4 per 100 000 woman-years.
under less favorable effectiveness assumptions and were consider-
ably less than the current over-the-counter per dose price of €118
in the Netherlands. Furthermore, our study revealed that the cer-
vical cancer incidence and mortality level in the context in which
the vaccination was applied had a substantial impact on these
results.

The long-term efficacy and effectiveness of a national HPV
vaccination program are uncertain. To examine whether HPV vac-
cination could become cost-effective in the Dutch context, we
evaluated HPV vaccination under a combination of favorable
assumptions. However, almost all cost-effectiveness analyses of
HPV vaccination have used these same favorable assumptions,
which has resulted in an optimistic bias, to which we are, to some
extent, contributing. Thus, for comparison, we also calculated the
cost-effectiveness ratio and threshold price per dose vaccine under
much less favorable assumptions, that is, five vaccinations (four
booster doses after the initial round) during a lifetime to maintain life-
long protection, 50% attendance rate (assuming that the 10% of
the persistent nonattenders for screening, who were assumed to
have a threefold higher risk of cervical cancer than the attenders,
will not attend vaccination), and 50% efficacy of the vaccine on
cervical cancer incidence. Under these combined assumptions, we
found that adding vaccination to the current screening situation in
the Netherlands had a cost-effectiveness ratio of €362 100 per QALY
gained. In this situation, vaccination would still not be cost-
effective even if the price per vaccine dose was €0.

Previous cost-effectiveness analyses of HPV vaccination that
compared screening plus vaccination vs screening only (1–6,27–29)
produced lower cost-effectiveness ratios than the one produced in
this study. We showed that this difference could be explained (to a
large extent) by differences in the incidence of cervical cancer in the
situation in which vaccination was applied. For example, when the
incidence level under the current screening program was doubled or halved in our model, the cost-effectiveness ratio of vac-
cination plus screening compared with screening only was more
than halved and almost doubled, respectively (Table 4). In most of
the other cost-effectiveness analyses (except for that conducted in
Israel), the incidence of cervical cancer was higher than that in our
study for the Dutch situation.

Another explanation for the variation among published cost-
effectiveness ratios is differences in the costs of vaccination. The
assumed total cost of vaccination in the Netherlands was approxi-
ately 1.5 times higher than the assumed cost of vaccination in the
studies from other countries. One reason for this difference is that
in the Dutch situation, additional costs for the initial vaccination of
three doses excluding the price of the vaccine itself (eg, costs of
invitations, administration of the vaccine, and time and travel costs
for the women) were estimated at €49.92, whereas estimates of
these additional costs in other studies ranged from €0 in Mexico
(28) to €46 in Israel (30). The studies from the United States
assumed higher additional costs (€62 and €66) (2.6). However, the
main reason for differences in vaccination costs is that the over-
the-counter price of the vaccine itself in the Netherlands was
assumed to be €354 (for three doses) compared with the lowest
price of €176 (28) and the highest price of €296 (29) in other
studies. We accounted for this discrepancy by varying the unit
price of vaccination in the sensitivity analysis.

The acceptability of the cost-effectiveness ratio of HPV vaccina-
tion also varies depending on the acceptability threshold that is used.
The cost-effectiveness acceptability threshold of €20 000 per QALY
gained for the Netherlands (which was used for cost-effectiveness
analyses of screening in the Netherlands (11)) is relatively low com-
pared with the €50 000 per QALY gained threshold often used for
other countries (25). As a result, interventions are often considered
not cost-effective (ie, the cost-effectiveness ratio is higher than the
threshold). As we have shown, to achieve a cost-effectiveness ratio of
€50 000 per QALY gained (under the assumption of lifelong protec-
tion), the over-the-counter price per vaccine dose had to decrease
only slightly (from €118 to €110) for the Dutch situation (Table 4).

We have also shown that the number of booster vaccinations
(which are required to maintain lifelong protection against cervical
cancer) has an impact on the cost-effectiveness ratio. However, the
efficacy of HPV vaccination is related to other uncertain factors. For
example, there is evidence that HPV vaccine can cross-protect against
HPV-31 and HPV-45, which are closely related to HPV-16 and
HPV-18, respectively (21). In addition, other oncogenic HPV types
may fill the biological niche that remains after the elimination of
HPV-16/18 infections and as a result cause more cervical cancer than
they do in the absence of vaccination. Furthermore, a proportion of
12-year-old girls may have already been exposed to HPV-16/18 at the
time of vaccination (31); such exposure is important because the effec-
tiveness of the vaccine is lower if HPV-16/18 is present in the person
who is vaccinated (32). As a result of these uncertain factors, the pro-
tection offered by vaccination against HPV-16/18 may be larger, but
is probably smaller, than initially anticipated. We showed that vari-
ation in HPV vaccination efficacy had a considerable impact on the
cost-effectiveness ratio of HPV vaccination.

To our knowledge, no data are available on the relationship
between participation in vaccination and the risk for cervical cancer.
In our base case analysis, we assumed that all simulated women,
regardless of their risk of cervical cancer, received HPV vaccination
at the initial or the booster vaccination rounds. However, a pilot
study in the United Kingdom showed that the uptake of HPV vac-
cination was lower among girls from less affluent backgrounds and
minority groups, who often have a higher cervical cancer risk (33).
Because screening is selectively used by women who are at lower risk
of cervical cancer (19), it is also plausible that HPV vaccination
attendance (especially at the booster rounds, which are given to
adults) will also be selective to some extent, which would decrease
the cost-effectiveness of vaccination.

Another factor with an uncertain effect on the cost-effectiveness
ratio of HPV vaccination is immigration. Evidence from the Centers
for Disease Control and Prevention indicates that the relatively
higher incidence and mortality rates of cervical cancer in the United
States compared with those in the Netherlands are due to immigra-
tion of foreign-born women into the United States, many of whom
have not been screened for this disease in their country of origin
(34). Given that the application of vaccination is limited to younger
ages, which excludes women who immigrate as adults, the effect of
vaccination will apply to a low-risk population of women who are
raised in the United States. These women may be at even lower risk
than women in the Netherlands because of the more intensive screen-
ing for cervical cancer that occurs in the United States. As a result, the
effectiveness as well as the cost-effectiveness of HPV vaccination
that were not undertaken because these resources were committed to the intervention under consideration (43). In our analysis, the opportunity costs of HPV vaccination are preventing 100 deaths, or 2500 life-years, for a price tag of €27 million.

The consequences of discounting future costs and effects on the cost-effectiveness ratio can be substantial, especially when the intervention involves current costs and future effects (ie, the time between current costs and future effects is rather long), as it typically is with prevention. In 2006, the Dutch Health Care Insurance Board (Collegie voor Zorgverzekeringen) recommended that costs and effects were to be discounted at 4% and 1.5%, respectively, per year (44). In this analysis, applying these rates would reduce the costs for HPV vaccination from €53 500 to €19 700 per QALY gained. However, in 1996, when policy decisions were being made about cervical cancer screening in the Netherlands, both costs and effects were to be discounted at 4% (45). Because these new cost-effectiveness criteria (ie, 4% for costs and 1.5% for effects) would also favor the cost-effectiveness ratio of cervical cancer screening, we need to reconsider optimal screening (ie, screen ages, interval between screen tests, and frequency) and compare the health effects gained due to allocating more resources to screening with the health effects gained due to adding vaccination to the Dutch screening program. Such an analysis should include the design of an optimal combination of HPV vaccination and screening, including combinations of vaccination with different levels of cytological and HPV screening for the Dutch situation.

In conclusion, many uncertainties still exist about the effects of HPV vaccination on HPV-related diseases. Our cost-effectiveness analysis shows that in the Netherlands, a country with low cervical cancer incidence and mortality, HPV vaccination is not cost-effective (even under as yet unproven favorable assumptions). To become cost-effective, the vaccine price would have to be decreased considerably, depending on the effectiveness of the vaccine.

References

15. van Ballegooijen M. *Effects and Costs of Cervical Cancer Screening [thesis]*. Rotterdam, the Netherlands: Department of Public Health, Erasmus University; 1998.

Funding

GlaxoSmithKline (HT/br/06 017 to the Department of Public Health of the Erasmus University Medical Centre).

Notes

The study sponsor had no role in the design of the study; the collection, analysis, or interpretation of the data; the writing of the manuscript; or the decision to submit the manuscript for publication.

Manuscript received November 27, 2008; revised May 8, 2009; accepted May 26, 2009.